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PAPER

Diversity-Robust Acoustic Feature Signatures Based on Multiscale
Fractal Dimension for Similarity Search of Environmental Sounds

Motohiro SUNOUCHI†a) and Masaharu YOSHIOKA††b), Members

SUMMARY This paper proposes new acoustic feature signatures based
on the multiscale fractal dimension (MFD), which are robust against the
diversity of environmental sounds, for the content-based similarity search.
The diversity of sound sources and acoustic compositions is a typical fea-
ture of environmental sounds. Several acoustic features have been proposed
for environmental sounds. Among them is the widely-used Mel-Frequency
Cepstral Coefficients (MFCCs), which describes frequency-domain fea-
tures. However, in addition to these features in the frequency domain,
environmental sounds have other important features in the time domain
with various time scales. In our previous paper, we proposed enhanced
multiscale fractal dimension signature (EMFD) for environmental sounds.
This paper extends EMFD by using the kernel density estimation method,
which results in better performance of the similarity search tasks. Further-
more, it newly proposes another acoustic feature signature based on MFD,
namely very-long-range multiscale fractal dimension signature (MFD-VL).
The MFD-VL signature describes several features of the time-varying en-
velope for long periods of time. The MFD-VL signature has stability and
robustness against background noise and small fluctuations in the param-
eters of sound sources, which are produced in field recordings. We dis-
cuss the effectiveness of these signatures in the similarity sound search by
comparing with acoustic features proposed in the DCASE 2018 challenges.
Due to the unique descriptiveness of our proposed signatures, we confirmed
the signatures are effective when they are used with other acoustic features.
key words: environmental sound analysis, fractals, content-based re-
trieval, feature extraction

1. Introduction

Acoustic feature extraction is a basic audio signal process-
ing issue. Acoustic features are important and necessary
for various contexts and applications related to environmen-
tal sound recognition (ESR), such as large-scale content-
based retrieval, auditory scene analysis, visualization, and
event detection for surveillance. During the last decade,
handy digital sound recorders have gained popularity, and
at present, not only professional creators, but also amateurs
have started recording environmental sounds and sharing
them on web services such as Freesound [1], [2] and Sound-
Cloud [3]. These sound recordings are not only appreciated
as music works, but also sampled for creating sound effects,
new music works, and live performances in music genres

Manuscript received January 18, 2021.
Manuscript revised May 14, 2021.
Manuscript publicized July 2, 2021.
†The author is with the Design Department, Sapporo City Uni-

versity, Sapporo-shi, 005–0864 Japan.
††The author is with the Graduate School of Information Sci-

ence and Technology, Hokkaido University, Sapporo-shi, 060–
0814 Japan.

a) E-mail: sunouchi@media.scu.ac.jp
b) E-mail: yoshioka@ist.hokudai.ac.jp

DOI: 10.1587/transinf.2021EDP7016

such as ambient, drone, and electronic [4], [5]. These sound
recordings are also utilized for research to analyze and un-
derstand the variety of sound environments that we live in
[6].

1.1 Applications Using Acoustic Features for Environ-
mental Sounds

In recent years, the research on ESR for understanding a
scene and its context has received considerable attention [7].
The workshop challenges on Detection and Classification of
Acoustic Scenes and Events (DCASE) have demonstrated
performance evaluations of systems for the detection and
classification of sound events [8]. Based on the best result
from Task 1B of DCASE2020, Koutini et al. evaluated their
Receptive Field (RF) regularized CNN model with some pa-
rameter reduction methods [9].

Classification is a basic application that uses acoustic
features. In 2003, Cowling and Sitte [10] presented a com-
prehensive comparative study of classification techniques
that use various acoustic features for environmental sounds.
They reported that the test patterns using each of the Mel-
Frequency Cepstral Coefficients (MFCCs) and the contin-
uous wavelet transform achieved the best recognition per-
formance. In 2009 and 2012, Chu et al. [11] and Mogi
et al. [12] reported that recognition systems that use the
Matching-Pursuit-based acoustic feature as a time-domain
feature shows better classification performance than systems
that use the popular MFCCs only as a frequency-domain
feature. In 2013, Bauge et al. [13] proposed a new acous-
tic feature for environmental sounds based on the scattering
transform. This feature is robust against frequency transpo-
sition.

Content-based retrieval is another basic application that
uses acoustic features. Web-based sound archives such as
Freesound and SoundCloud are becoming popular and the
amount of their sound content is increasing. The online
users who utilize these sound archives can share and browse
sound content by means of content-based retrieval. In 2008,
Xue et al. [14] proposed a similarity search system, which
employs a cluster-based indexing approach for environmen-
tal sounds. In 2010, Roma et al. [15] proposed a method
for the retrieval of environmental sounds using the gen-
eral sound-events taxonomy defined based on the principles
of ecological acoustics. Chechik et al. [16] compared the
scalability of several classification methods using MFCCs
for a large-scale content-based sound retrieval. In 2013,
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Sunouchi and Tanaka [17] proposed a new acoustic feature
signature, namely, the enhanced multiscale fractal dimen-
sion signature (EMFD) and demonstrated the effectiveness
of EMFD for content-based similarity search of environ-
mental sounds.

In recent years, the workshop challenges on DCASE
have focused on improving machine learning methods for
ESR and produced high-performance results for their tasks.
Acoustic features are still essential as input data for the ma-
chine learning methods for ESR. Hence finding new acous-
tic features that can properly describe the features of envi-
ronmental sounds is fundamental in improving the perfor-
mance of these ESR applications. In addition, by studying
how acoustic features can describe the features of environ-
mental sounds and affect the performance of ESR tasks, we
can develop an understanding of how we are listening to en-
vironmental sounds.

1.2 Acoustic Feature Extraction for ESR

The environmental sounds outside a recording studio are
produced by action and movement. We can identify things
by listening to their acoustic properties, which are the re-
sults of the sound production process. However, environ-
mental sound signals of the same type cannot be physi-
cally identical to each other due to the difference in their
production processes. Furthermore, the different sound sig-
nals generated by simultaneous events are mixed with each
other, which makes the properties of each sound source ob-
scured [18].

Various acoustic features have been proposed for
content-based audio retrieval. The feature selection is an
important process for ESR [19], [20]. Cepstral features
that include MFCCs and their first and second derivatives
(MFCCsΔ and MFCCsΔΔ) are widely used as frequency-
domain acoustic features. MP-based acoustic feature has
been proposed as one of the useful time-domain features for
ESR [11], [12], [21].

Recent researches have focused on the evaluation of
time-domain features of environmental sounds. For ESR,
we need acoustic features that describe the non-stationary
characteristics of target sounds as a time-domain feature and
are robust against the diversity of environmental sounds [7].
We have recognized there may be three main causes of the
diversity of environmental sounds.

D1) Small fluctuations of sound source parameters, such as
carrier signal frequency, due to the individuality of the
sound source.

D2) Background noises that the person who recorded the
target sound did not expect to record.

D3) Mixed composition of different types of sound sources.

For the third cause D3, it is necessary to apply, for
example, independent component analysis or non-negative
matrix factorization to the sound signal before the feature
extraction process [12], [22]. In this study, we focus on the
extraction of new acoustic feature signatures that are robust

against the diversities caused by D1 and D2.

1.3 Problems of EMFD Signature and Their Solutions

In our previous work [17], we proposed an EMFD signature
that can describe both the frequency-domain features and
time-domain features of target sounds. The EMFD signature
is a feature vector, which consists of the time-varying mul-
tiscale fractal dimension (MFD) values. We demonstrated
that EMFD improves the performance of similarity search
by supplementing MFCCs. Unfortunately, it is found that
EMFD includes error values that depend on the number of
analysis windows and the histogram’s bin size used for com-
puting its histogram. Furthermore, EMFD seems to be over-
sensitive while discriminating the features of environmental
sounds, and may lack robustness against the diversity of en-
vironmental sounds.

In this study, we extend the EMFD signature by im-
proving the process of computing its histogram using the
kernel density estimation method. By optimizing the band-
width parameter used for kernel density estimation, the his-
togram of the enhanced multiscale fractal dimension using
kernel density estimation signature (EMFD-KDE) becomes
sufficiently smooth and robust against the diversity of en-
vironmental sounds as an acoustic feature signature. In
Sect. 2, we present the basic theory and characteristics of
EMFD. In Sect. 3, we propose a method to compute the
EMFD-KDE signature. In Sects. 5 and 6, we demonstrate
that EMFD-KDE improves the performance of the similar-
ity search system.

Furthermore, we enhance the idea of EMFD and pro-
pose a new acoustic feature signature, namely very-long-
range multiscale fractal dimension signature (MFD-VL).
The environmental sounds have important acoustic features
over a long time period. However, EMFD cannot describe
the time-domain feature for time periods longer than 10 ms.
In Sect. 4, we propose a method to compute the MFD-VL
signature. In addition, we demonstrate that MFD-VL can
describe the features of the time varying envelope for long
periods of time, and that it has the robustness against the
diversity causes D1 and D2.

In Sect. 7, we conclude that the proposed feature sig-
natures of EMFD-KDE and MFD-VL solve the problems
of EMFD and are effective when they are used with other
acoustic features, including MFCCs and acoustic features
proposed in the DCASE 2018 challenges.

2. Basic Theory of Enhanced Multiscale Fractal Di-
mension Signature

Mandelbrot, who advocated a concept of fractal in 1975 for
the first time, demonstrated that some structures in nature
could be modeled well by the theory of fractals [23]. One
of the most important characteristics of fractals is that they
have self-similarity properties at multiple scales. In the field
of acoustics, Voss and Clarke analyzed the power spectrum
of fluctuating physical variables including frequency, loud-
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ness and pitch in music and speech [24]. They obtained the
1/ f γ (0.5 � γ � 1.5) aspects in the power spectrum of each
variable against the frequency of a signal passed through a
low-pass filter having a range 0 Hz – 1 Hz. Hsu [25] com-
pared the fractal geometry of classical music works, and
found that there is a relation, defined by the theory of frac-
tals, between the interval of successive notes and their fre-
quency of occurrence.

2.1 Multiscale Fractal Dimension

A fractal dimension is an index value that can describe
the characteristics of a fractal by quantifying their com-
plexity as a ratio of the change in detail to the change in
scale. Acoustic features based on the fractal dimension have
been proposed and utilized for various practical applica-
tions in the fields such as acoustics, music analysis, image
analysis, physics, physiology, and neuroscience. Maragos
et al. [26], [27] proposed the short-time fractal dimension
of speech signals as an acoustic feature and used it for
speech segmentation and sound classification. Zlatintsi and
Maragos [28], [29] proposed a multiscale fractal dimension
(MFD) profile as a short-time descriptor and found that this
descriptor can discriminate several aspects among different
musical instruments.

2.2 Steps to Compute the EMFD Signature

In our previous work [17], we developed EMFD as a feature
signature of environmental sounds for a similarity search
system. The EMFD is computed as follows.

2.2.1 Preprocessing Target Sounds

The maximum amplitude of each target sound that is to be
analyzed must be first normalized to −0.1 db. They are con-
verted to the standard format with the following specifica-
tions: sampling rate of 44.1 kHz and bit depth of 16 bits.

2.2.2 Computing the Area of Minkowski Sausage

The fractal dimension of a sound signal can be computed
based on the Minkowski-Bouligand dimension. A cover-
ing area can be drawn by moving a unit disk of radius r
along the curve of the waveform. This covering area is
called a Minkowski Sausage. The center of the unit disk
should be at any position on the curve of waveform and the
width of Minkowski Sausage becomes 2r. Figure 1 shows
the Minkowski Sausage obtained by moving the unit disk
along the waveform. To compute the area of the Minkowski
Sausage of a discrete sound signal, the unit disk vector C(r)
is defined as Eq. (1), where r denotes the radius of the unit
disk and i denotes the discrete position on the horizon. Fig-
ure 2 shows how the model of the unit disk is built. The
vertical distance from the center to the top of unit disk at
each horizontal position is denoted by the unit disk vector
C(r). Let n be the sampling position, r the radius of the unit

Fig. 1 A sound waveform and a Minkowski sausage

Fig. 2 Mesh-Approximation of a unit disk

disk, p the discrete position of the unit disk, and sig(x) the
amplitude of sound signal at each sampling position x. The
area of the Minkowski Sausage area(n, r) at each sampling
position n is computed as Eq. (2).

C(r) =
{
floor

(√
2ri − i2

) ∣∣∣∣ 0 ≤ i ≤ 2r, i ∈ Z
}

(1)

area(n, r)= max
0≤p≤2r

p∈Z

(
sig (n−r+p)+floor

(√
2rp−p2

))

− min
0≤p≤2r

p∈Z

(
sig (n−r+p)−floor

(√
2rp−p2

))
(2)

2.2.3 Definition of Multiscale Fractal Dimension

The MFD values are computed for each analysis window
whose period is 50ms. Let A(r) be the area of the Minkowski
Sausage drawn by the unit disk of radius r in each analysis
window. The MFD of each analysis window is defined by
Eq. (3). The minimum radius (r = 1) corresponds to the
sampling period of the signal (1/44.1 ms) and the range of
r from 1 to 132 corresponds to the range of the time scales
from 1/44.1 to 3 ms.

MFD=

{
2− log (A(r+1)/A(r))

log ((r+1)/r)

∣∣∣∣∣∣ 1≤r≤132, r∈Z
}

(3)

2.2.4 Definition of the EMFD Signature

In our previous work [17], we found that MFD has informa-
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MFDenhanced(x) = 2 − log (A(r(x + 1))/A(r(x)))
log (r(x + 1)/r(x))

,where r(x) = round(1.4x) (4)

AW(sound, period) =

{
0, period, . . . ,floor

(
the length of sound

period
− 1

)
× period

}
(5)

FAW(dbin, rbin) =
{

t
∣∣∣ t ∈ AW(sound, 50),

1 + (dbin − 1)/32 ≤ MFDenhanced(rbin) of analysis window t < 1 + dbin/32
}

(6)

EMFD(sound) =

{
card (FAW(dbin, rbin))
card (AW(sound, 50))

∣∣∣∣∣∣ 1 ≤ dbin ≤ 32, dbin ∈ Z, 1 ≤ rbin ≤ 16, rbin ∈ Z
}

(7)

Fig. 3 Visualization of the EMFD signature of a cuckoo sound S cuckoo

tive values for unit disks larger than the disk with a radius
of 3 ms (r = 132). The maximum radius of the unit disk
was extended to 218, which corresponds to 5 ms (1/10 of
the period of analysis window), and the discrete values of
the unit disk were modified to have exponential values. The
enhanced MFD value at the x-th discrete value of the unit
disk is defined as Eq. (4). The enhanced MFD values are
computed for each analysis window. The EMFD signature
is then defined as the two-dimensional histogram (16×32) of
the time-varying enhanced MFD. Let period be the period
(ms) of the analysis window and sound be the target sound.
The set of analysis windows of the target sound is defined as
Eq. (5). Let rbin be the bins that correspond to a series of 16
numbers used to define the different radius of the unit disk
for computing the enhanced MFD, and dbin be the bins that
correspond to a series of the 32 small intervals into which
the range of fractal dimension is divided. The set of analy-
sis windows whose enhanced MFD values fall into the bin
(dbin, rbin) is defined by Eq. (6). The set of values in each
bin of the EMFD histogram is defined by Eq. (7). Figure 3
shows the histogram that visualizes the EMFD signature of
a cuckoo sound S cuckoo. The length of S cuckoo is 21.08s.

2.3 Known Characteristics of the EMFD Signature

Zlatintsi and Maragos [29] concluded that the MFD profiles
are useful for quantifying the multiscale complexity and
fragmentation of the different states of the instrument sound

waveforms. In our previous work [17], we confirmed that
EMFD describes the frequency-domain features and sev-
eral other effective features of environmental sounds that
MFCCs cannot describe. Furthermore, we confirmed that
the EMFD signature has robustness against changes in vol-
ume levels and phase shifting of sound signals in the analy-
sis window.

2.4 Problems of the EMFD Signature

The EMFD includes error values that depend on the number
of analysis windows and the histogram’s bin size, which is
defined for computing its histogram, as shown in Eq. (7). In
Sect. 3, we extend the existing EMFD by employing a kernel
density estimation method to solve this problem.

Another problem of EMFD is that it cannot describe
time-domain features for a time period longer than 10 ms,
although environmental sounds have important acoustic fea-
tures over a long time period. To solve this problem, we in-
troduce MFD-VL signature in Sect. 4 as a newly developed
time-domain acoustic feature.

3. Extending EMFD Employing a Kernel Density Esti-
mation Method

As mentioned in Sect. 2.2, EMFD is computed as the two-
dimensional histogram of time-varying enhanced MFD val-
ues. Let NFAW(bin) be the number of analysis win-
dows whose enhanced MFD values fall into the bin, and
NAW(sound) be the total number of analysis windows of the
target sound sound, as defined in Eq. (8). The EMFD value
of each bin EMFD(sound, bin) is computed as Eq. (9). This
method has the following two problems.

NAW(sound) = card
(
AW(sound, 50)

)
(8)

EMFD(sound, bin) =
NFAW(bin)
NAW(sound)

(9)

The first problem is that the value of each bin neces-
sarily includes an error, because the value can be one of the
discrete values given by the density of analysis windows. In
particular, a lower number of analysis windows for the tar-
get sound increases the errors. Ideally, the EMFD histogram
should be a continuous probability distribution of the time-
varying enhanced MFD values, regardless of the number of
analysis windows.
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The second problem is that EMFD computed by the
existing method is oversensitive to discriminate the features
of environmental sounds. The tones and frequencies of
each environmental sound may often vary, depending on
the recording conditions and individual characteristics of
the sources that generate this sound, even if person try to
record the same type of environmental sounds in the same
way. Therefore, a feature signature of environmental sounds
should have robustness against the diversity of environmen-
tal sounds caused by D1 defined in Sect. 1.2.

To solve these problems, we introduce the kernel den-
sity estimation method to compute the EMFD histogram.

3.1 Definition of the EMFD-KDE Signature

The kernel density estimation method is employed to com-
pute the probability distribution of the enhanced MFD val-
ues at each radius of the unit disk. The values of each bin
of EMFD-KDE are defined as shown in Eq. (4), Eq. (8),
Eq. (10), Eq. (11), and Eq. (12), where K(·) is the kernel
function which is a Gaussian function, and h in Eq. (11) is
the smoothing parameter called bandwidth.

K(x) =
1√
2π

e−
1
2 x2

(10)

fem f d-kde(dbinval, rbin) =
1

NAW h

×
NAW∑

K

(
dbinval − MFDenhanced(rbin)

h

)
(11)

EMFD-KDE=

{
fem f d-kde

(
1+

dbin−0.5
32

, rbin

)
∣∣∣∣∣∣ 1≤dbin≤32, dbin∈Z, 1≤rbin≤16, rbin∈Z

}
(12)

3.2 Optimization of the Bandwidth for Kernel Density Es-
timation

The bandwidth h is a smoothing parameter, which is usu-
ally determined by the trade-off between the number of data
samples and their standard deviation. Let n be the num-
ber of data samples and σ be the standard deviation of the
data samples. The bandwidth h of a Gaussian kernel density
estimator is given by the normal reference rule defined by
Eq. (13). The normal reference rule is most commonly used
to determine the bandwidth [30].

h =

(
4σ5

3n

) 1
5

≈ 1.06σn−
1
5 (13)

We define the bandwidth hrbin(α), which is optimized
for each radius of the unit disk, as Eq. (14), Eq. (15), and
Eq. (16), where avg is the arithmetic mean of the enhanced
MFD values of each analysis window at rbin, and σrbin

is the standard deviation of the enhanced MFD values at

Fig. 4 The 3D histogram image that visualizes the existing EMFD sig-
nature of the cuckoo sound S cuckoo

Fig. 5 The 3D histogram image that visualizes the EMFD-KDE signa-
ture of the cuckoo sound S cuckoo. The bandwidth is hrbin(32).

rbin. The smoothing parameter α in Eq. (16) is a constant.
Through the experiments with different values of α, the con-
stant value is determined so that the best result for the target
task is obtained.

avg =
1

NAW

NAW∑
MFDenhanced(rbin) (14)

σrbin=

√√
1

NAW

NAW∑
(MFDenhanced(rbin)−avg)2 (15)

hrbin(α) = 1.06σrbinNAW−
1
5α (16)

Figure 4 shows the 3D histogram visualizing the
EMFD signature of the cuckoo sound S cuckoo. Figure 5
shows the 3D histogram visualizing the EMFD-KDE sig-
nature of the same cuckoo sound S cuckoo. The 3D histogram
of the EMFD-KDE signature is much smoother than that of
the EMFD signature. At each radius of the unit disk, the
larger standard deviation of the enhanced MFD values σrbin

results in the smoother histogram.

4. Very Long Range Multiscale Fractal Dimension Sig-
nature

The environmental sounds have important acoustic features
with varying time periods. However, EMFD cannot describe
the time-domain features for time periods longer than 10 ms.
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Fig. 6 A sound waveform and a Minkowski Sausage obtained by moving
the unit square

To solve this problem, we propose a new acoustic feature
signature for environmental sounds, based on the multiscale
fractal dimension. This feature signature is called very-
long-range multiscale fractal dimension signature (MFD-
VL). The basic idea of MFD-VL is to extend the size range
of the unit figure to consider the larger ones, which are used
to compute the area of the Minkowski Sausage. In this sec-
tion, we define the method to compute the MFD-VL signa-
ture and demonstrate its characteristics.

4.1 Definition of the MFD-VL Signature

The multiscale fractal dimension values of MFD-VL are
computed for an entire target sound, and not for each fixed-
length analysis window of the target sound. A unit square,
instead of a unit disk, is used to compute the area of
the Minkowski Sausage for MFD-VL. Figure 6 shows the
Minkowski Sausage obtained by moving the unit square
along the waveform. The method using the unit square is
much faster than the one using the unit disk. Let n denote the
sampling position, r the half side-length of the unit square,
p the discrete position of the unit square, and sig(x) the am-
plitude value of the sound signal at each sampling position
x. The area of the Minkowski Sausage areasq(n, r) at each
sampling position n is computed as Eq. (17).

areasq(n, r) = max
0≤p≤2r

p∈Z

(
sig (n − r + p) + r

)
− min

0≤p≤2r
p∈Z

(
sig (n − r + p) − r

)
(17)

The half side-length r of the unit square for each scale
was defined as Eq. (18), where s f is the sampling frequency
of the target sound. In this study, s f is 44100 Hz. Let Asq(r)
denote the area of the Minkowski Sausage obtained for an
entire target sound by moving the unit square whose side
length is 2r. The MFD-VL signature is defined as Eq. (19).
The MFD-VL signature is a feature vector that contains 10
elements.

r(x) = round
(
s f × 2−

x+2
2

)
(18)

MFD-VL=
{
2−

log
(
Asq(r(x))/Asq(r(x+1))

)
log (r(x)/r(x+1))∣∣∣∣∣ 0≤ x≤9, x∈Z

}
(19)

4.2 Basic Characteristics of the MFD-VL Signature

We found several basic characteristics of MFD-VL through
the experiments using test sounds.

4.2.1 MFD-VL’s Descriptiveness of the Beats of Single
Sine Waves

The MFD-VL signature is expected to describe the acoustic
features over very long time-periods. We found that MFD-
VL can discriminate frequencies of amplitude envelopes be-
tween 22.6 Hz and 1 Hz. The range of the wavelength of the
amplitude envelopes corresponds to the range of the side
length of the unit square between 0.044 s and 1 s. Let fbeat

denote the frequency of the beats and fcontent denote the fre-
quency of single sine waves inside the amplitude envelopes.
The set of test sounds S S t1 is defined as Eq. (20), Eq. (21),
and Eq. (22). Each test sound is filtered by the pink noise fil-
ter function fpn Eq. (20). A sound that is artificially synthe-
sized using pure tones usually has distinct or sparse spectra.
This kind of sounds may cause numerical instabilities while
calculating their acoustic features. To solve this problem,
the pink noise filter function fpn is used to add a background
pink noise, which is defined as Eq. (20), where sig is an in-
put signal and Noisepink is a background pink noise whose
maximum amplitude is normalized to −0.1 db. The signal-
to-noise ratio is 24 db. The pink noise, known as 1/ f noise,
is a signal whose power spectral density is inversely pro-
portional to the signal frequency. The pink noise signal is
known to widely exist in the natural world. The frequency
components below 40 Hz contained in the pink noise are
cut off by using a low cut filter before the amplitude nor-
malization because the components with lower frequencies
cannot be recorded nor played using common microphones
and speakers.

fpn (sig) =
15
16

sig +
1

16
Noisepink (20)

st1( fbeat, fcontent)= fpn
(
cos(π fbeat t) sin(2π fcontent t)

)
(21)

S S t1 =
{
st1( fbeat, fcontent)∣∣∣ fcontent = 440, fbeat ∈ {0.5, 1, 2, 4, 8, 16, 32}}

(22)

Figure 7 shows the line charts of the MFD-VL values
of single sine waves of frequency 440 Hz, which is filtered
by Eq. (20), and those of the test sounds S S t1. In Fig. 7, the
frequencies of the beats are indicated by the troughs of the
line chart, in which the side length of the unit square is less
than the wavelengths of the beats. This characteristic can be
understood morphologically as shown in Fig. 8. When the
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Fig. 7 Line charts of the MFD-VL signatures of single sine waves of
frequency 440Hz, with and without a beat. The beat frequencies are 0.5Hz,
1Hz, 2Hz, 4Hz, 8Hz, 16Hz, and 32Hz.

Fig. 8 Minkowski Sausage obtained by moving the unit square whose
side length is less than the wavelength of the beat.

side length of the unit square is more than the wavelength of
the beat, the area of the Minkowski Sausage becomes almost
the same as that of a single sine wave without beats. When
the side length of the unit square is less than the wavelengths
of the beats, the shorter side length of the unit square results
in a smaller area of Minkowski Sausage.

4.2.2 MFD-VL’s Descriptiveness of Amplitude Envelope
Shapes

Here we analyze some other characteristics of the MFD-VL
that are related to the descriptiveness of the amplitude enve-
lope shapes. Let fpulse be the frequency of the rectangular
pulse waves and wpulse be the ratio of the rectangular pulse
width to the wavelength of the rectangular pulse waves. The
rectangular pulse function rect( fpulse, wpulse, t) for gener-
ating the amplitude envelopes is defined as Eq. (23). Let
fcontent be the frequency of a single sine wave inside the am-
plitude envelopes generated by the rectangular pulse func-
tion. The test sound st2 is defined as Eq. (23) and Eq. (24).
The test sound is filtered by the pink noise filter function fpn

Eq. (20).

rect( fpulse, wpulse, t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
(
t mod 1

fpulse
<=

wpulse

fpulse

)
0 (otherwise)

(23)

Fig. 9 Line charts of the MFD-VL signatures for single sine waves hav-
ing a frequency of 440 Hz; those masked by the cosine function, and those
masked by the rectangular pulse function.

st2( fpulse, wpulse, fcontent)

= fpn
(
rect( fpulse, wpulse, t) sin(2π fcontent t)

)
(24)

We define the set of test sounds S S t2 as Eq. (25). The
line charts of MFD-VL of the single sine wave of frequency
440 Hz, which is filtered by Eq. (20), and S S t2 are showed
in Fig. 9. Here, we compare the line charts of MFD-VL for
st1 and those for st2. This comparison shows that the bottom
of the line chart trough of st2 for fpulse = 2 is deeper than
that of st1 for fbeat = 2, and that the bottom of the line chart
trough of st2 for fpulse = 4 is also deeper than that of st1 for
fbeat = 4.

S S t2=
{
st1( fbeat, fcontent)

∣∣∣ fcontent=440, fbeat ∈{2, 4}}
∪ {

st2( fpulse, wpulse, fcontent)∣∣∣ fcontent=440, fpulse ∈{2, 4}, wpulse=0.5
}

(25)

For another comparison, we define a set of test sounds
S S t3 as Eq. (26). The set of test sounds S S t3 contains sin-
gle sine waves having a frequency of 440 Hz masked by
the rectangular pulse functions with various widths wpulse.
In Fig. 10, we compare the line charts of MFD-VL of sin-
gle sine wave having a frequency of 440 Hz, st1( fcontent =

440, fbeat = 4), and S S t3. This comparison shows that the
narrower width of the amplitude envelopes made by the rect-
angular pulse function results in deeper troughs in the line
chart.

S S t3 =
{
st2( fpulse, wpulse, fcontent)∣∣∣ fcontent=440, fpulse=4, wpulse ∈{0.2, 0.5, 0.8}}

(26)

4.3 MFD-VL’s Descriptiveness of Amplitude Envelopes
of Simulated Environmental Sounds

Environmental sounds such as chirping of insects and birds,
and water streams have amplitude-modulated waveforms. It
is well-known that some type of environmental sounds can
be simulated by the granular synthesis technique [31]. The
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Fig. 10 Line charts of the MFD-VL signatures of single sine waves hav-
ing a frequency of 440 Hz; those masked by the cosine function, and those
masked by the rectangular pulse function having various widths.

granular synthesis technique splits a sound signal into small
pieces called grains. Each grain has an envelope that con-
tains an actual sonic content. If the content signal is a sim-
ple sinusoid, the synthesized sound signal is considered to
be the same as a sound signal produced using the amplitude-
modulation technique.

For example, the sound signal of the chirping of a
cricket has a carrier wave with a frequency of around 5 kHz,
and the carrier wave is modulated into trains of syllable
chirps whose rate is near 30 Hz [32]. The sound of a cricket
can be roughly simulated by the granular synthesis with an
envelope created by the Hann window, which is defined as
Eq. (27). Let fc be the frequency of the carrier wave and
fe be the frequency of the envelope rate. The model of the
chirping of a cricket simcricket can be defined, as shown in
Eq. (28) and Eq. (29). The sound signal of the chirping of a
Gryllus bimaculatus, which is a species of cricket living in
Japan, can be simulated as simcricket (t, 5800, 30). It is known
that the chirping of a Gryllus bimaculatus sometimes has
continuous 3-syllable chirps that are repeated three times
per second. Let fc denote the frequency of the carrier wave,
sn be the number of continuous syllable chirps, frep be the
number of repetitions per second of the set of continuous
syllable chirps, and fe be the frequency of continuous chirps.
Then, the model of chirping of a cricket simcricket2 is de-
fined using Eq. (30) and Eq. (31). Figure 11 shows the sound
waveform of signal simcricket2(t, 5800, 3, 2.73, 30).

ω (x) =
1
2

(1 − cos (2πx)) (27)

Ts (t, f ) = min

(
t mod

1
f
,

1
1.1 f

)
(28)

simcricket (t, fc, fe) = sin (2π fct)ω (1.1 feTs (t, fe)) (29)

rectcricket( fe, sn, frep, t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
(
t mod 1

frep
≤ sn

fe

)
0.05 (otherwise)

(30)

simcricket2

(
t, fc, sn, frep, fe

)
= rectcricket( fe, sn, frep, t) simcricket (t, fc, fe) (31)

We define the set of test sounds S S t4 as Eq. (32). For

Fig. 11 Sound waveform of the signal simcricket2(t, 5800, 3, 2.73, 30)

Fig. 12 Line charts of the MFD-VL signatures of simulated cricket
sounds. These show the MFD-VL’s robustness against fluctuations of a
carrier signal’s frequency.

Fig. 13 MFCC13 values of simulated cricket sounds. These show the
descriptiveness of varying carrier signals’ frequency.

preventing sparse spectra of the synthesized sound, each
test sound is filtered by the pink noise filter function fpn

Eq. (20), which is defined in Sect. 4.2.1. Figure 12 shows
the line charts of MFD-VL of S S t4. Figure 13 shows the 13-
coefficients MFCCs values (MFCC13) of S S t4. The SPTK
toolkit [33] was used to compute MFCC13. The MFD-VL
line charts of the sound set between simcricket (group1) and
simcricket2 (group2) are clearly different. These results indi-
cate that the MFD-VL signature can clearly discriminate the
two amplitude envelope signals.

S S t4=
{
fpn

(
simcricket(t, f , 30)

) ∣∣∣ f ∈{5300, 5800, 6300}}
∪ {

fpn
(
simcricket2(t, f , 3, 2.73, 30)

)∣∣∣ f ∈{5300, 5800, 6300}}
(32)
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4.4 MFD-VL’s Robustness against Fluctuations of a Car-
rier Signal’s Frequency

We have assumed that one of the main causes of the diver-
sity of environmental sounds is small fluctuations of sound
source parameters, such as carrier signal frequency, due to
the individuality of the sound source (D1). For example, the
frequency of the human voice varies with the size and form
of the individual’s vocal tract which are the sound source pa-
rameters with fluctuations. However, we can recognize the
sound recordings of talking by children, adults, and aged
persons as the human voice in the same manner. The set of
test sounds S S t4 contains the synthesized sound signals of
the chirping of a cricket with different frequencies of a car-
rier wave. We can evaluate the descriptiveness of acoustic
features for the small fluctuations of sound source param-
eters by comparing the feature vectors of test sounds con-
tained in S S t4.

Figure 12 shows the robustness of MFD-VL against the
fluctuation of the carrier signal’s frequency contained in the
amplitude envelopes. We defined the discrimination rate of
both MFD-VL and MFCC13 for the quantitative evaluation.
Let se(ts, n) denote the n-th element value of MFD-VL sig-
nature of the test sound clip ts. The MFD-VL discrimination
rate DRm f dvl for comparing two test sounds A and B is cal-
culated using Eq. (33). The RANGEm f dvl in Eq. (33) denotes
the width of the range of se(ts, x), which may take a value
between 1 and 2. Therefore, RANGEm f dvl is calculated as
1 (= 2 − 1). The MFCC13 discrimination rate DRm f cc13 for
comparing two test sounds A and B was defined as Eq. (34)
where se2(ts, n) was defined as the n-th dimension value of
the MFCC13 vector of the test sound clip ts. The constant
RANGEm f cc13 was set to 56.3. This number was determined
from the difference between the minimum and the maxi-
mum values of MFCC13 of 3000 environmental sounds in
a dataset for the experimental evaluation which is described
in Sect. 5. The sounds in the dataset were collected from the
Freesound project [2].

DRm f dvl =

√√√
1
10

10∑
n=1

(
se(A, n) − se(B, n)

RANGEm f dvl

)2

(33)

DRm f cc13 =

√√√
1

13

13∑
n=1

(
se2(A, n) − se2(B, n)

RANGEm f cc13

)2

(34)

Table 1 lists the comparisons of the two discrimina-
tion rates DRm f dvl and DRm f cc to distinguish two test sounds
with various carrier signal frequencies which are contained
in S S t4. This comparison shows that to distinguish any two
test sounds with various carrier signal frequencies, the val-
ues of DRm f dvl are not more than 0.22%, and those of DRm f cc

are not less than 2.90% and no more than 16.15%. These re-
sults indicate that the MFD-VL signature shows robustness
against the fluctuation of the carrier signal frequency, which
is the diversity cause D1 defined in Sect. 1.2. The MFD-VL

Table 1 Comparison of discrimination rates of varying carrier signals’
frequencies between the MFD-VL signature and MFCC13

Fig. 14 Line charts of the discrimination rates DRm f dvl and DRm f cc to
distinguish the simulated cricket sound S cricket2 and each sound in the set
of test sounds S S t5.

signature can clearly discriminate the characteristics of the
amplitude envelopes with its robustness against the fluctua-
tion of the carrier signal frequency.

4.5 MFD-VL’s Robustness against Noises

To evaluate the robustness of MFD-VL against noises,
we use test sounds generated from the simulated cricket
sound and pink noise signals. Let S cricket2 denote
simcricket2(t, 5800, 3, 2.73, 30), Noisepink denote a pink
noise signal whose maximum amplitude is normalized to
−0.1 db, and β be a constant number to control the signal-
to-noise ratio (SNR). Then, a set of test sounds S S t5 is cal-
culated using Eq. (35). The set of constant numbers β ∈
{0.67, 0.8, 0.89, 0.94, 0.97} corresponds to the set of SNRs
{6db, 12db, 18db, 24db, 30db} of S S t5. The frequency com-
ponents below 40 Hz contained in the pink noise are cut off
by using a low cut filter before the amplitude normalization
because the components with lower frequencies cannot be
recorded nor played using common microphones and speak-
ers.

S S t5 =
{
β S cricket2 + (1 − β) Noisepink∣∣∣ β ∈ {0.67, 0.8, 0.89, 0.94, 0.97}} (35)

Figure 14 shows the line charts of the discrimination
rates DRm f dvl and DRm f cc for distinguishing the simulated
cricket sound S cricket2 and each sound in the set of test
sounds S S t5. The results indicate that the MFD-VL sig-
nature has the higher robustness against the pink noise than
MFCC13, and that the MFD-VL signature is not relatively
affected by the pink noise. It is confirmed that the MFD-VL
signature is certainly robust against the diversity cause D2
defined in Sect. 1.2.
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5. Experimental Evaluation (EXP1)

5.1 Experimental Setups

To evaluate a descriptiveness of the acoustic feature signa-
tures based on the multiscale fractal dimension, we devel-
oped a similarity search system using the k-nearest neigh-
bors (k-NN) method. We examined the performances of the
similarity search tasks by using the proposed acoustic fea-
ture signatures.

To produce a sound dataset of environmental sounds,
sound samples were collected from the Freesound project,
which has stored many types of environmental sounds up-
loaded by users worldwide. The Freesound allows users
to share their sounds and describe metadata regarding their
shared sounds on the web. Each sound is labeled with a
group of tags that are relatively well maintained as user gen-
erated contents [1]. The tags represent the objects the users
were listening to in their listening experiences. Based on the
following rules defined by the authors, the sounds were cho-
sen and imported to our dataset to be used in the similarity
search system. The sounds that were tagged with “field-
recording” and with lengths between 1 and 600 s were cho-
sen. This means that these sound clips have been recorded
outside a recording studio. Each sound source outside the
studio is typically unique and never the same. Therefore,
sound clips that are tagged with “field-recording” have the
diversity cause D1. We imported the top 3000 sounds in
the descending order of downloaded number by unspecified
users counted by the Freesound’s system for each sound.
Each sound was converted to a uniform format (1 channel,
44100 Hz sampling frequency, 16 bits bit depth, and maxi-
mal amplitude normalized to −0.1 db) for normalization be-
fore extracting acoustic features including EMFD, EMFD-
KDE, MFD-VL, and MFCCs. The average length of the
imported sounds is 70.4 s.

5.2 Acoustic Feature Extraction

One of the most well-known acoustic features used for ESR
is MFCCs. Here, we used MFCCs for comparing the de-
scriptiveness with our newly-proposed feature signatures.
The SPTK toolkit was used to compute 13-coefficients
MFCCs (MFCC13) and MFCC39, which represents the first
and the second-order derivatives of MFCC13. MFCC13 and
MFCC39 were computed using a fixed width analysis win-
dow of length 50 ms. The feature sets of MFCC13 and
MFCC39 consist of mean values of their coefficients of the
analysis window. EMFD and EMFD-KDE consist of the
512 elements defined in Sects. 2 and 3, and MFD-VL con-
sists of the 10 elements defined in Sect. 4. In this experi-
ment (EXP1), we determined that the smoothing parameter
α used for computing the EMFD-KDE signature in Eq. (16)
is 32.

Table 2 lists different feature sets to be compared
through experimental evaluation. L1 represents the total

Table 2 List of acoustic feature sets for the comparison of their descrip-
tiveness.

number of features in the concatenated feature sets and L2
represents the number of features in the feature sets after di-
mensionality reduction through principal components anal-
ysis (PCA). To achieve the best possible performance of the
similarity search using k-NN method, PCA was applied to
the feature vectors of the most frequently downloaded 600
sounds in the dataset to extract its eigenvectors for dimen-
sionality reduction. The “prcomp” function of R language
was used for PCA processing. The corresponding L2s of
feature sets 1, 3, 6, and 8 were determined so that each of
their cumulative contribution ratios was 99%. The L2s of
feature sets 2, 4, 5, 7, 9, and 10 were fixed to 114.

Feature sets 1 and 6 are the standard sets for compar-
ing with other feature sets. Each feature set from 2 to 5
consists of MFCC13, and each feature signature is based on
the multiscale fractal dimension. We defined that each fea-
ture set from 1 to 5 belongs to the group FS1. In addition,
each feature set from 7 to 10 consists of MFCC39 and each
feature signature is based on the multiscale fractal dimen-
sion. Moreover, we defined each feature set from 6 to 10 to
belong to group FS2.

The suffix “(× γ)” of each feature vector denotes a
weighting coefficient γ. Each value of the feature vectors
is multiplied by γ when its feature vector is combined with
other feature(s). Through the experimental evaluation, the
weighting coefficient γ for each feature vector was appro-
priately chosen to perform the best result.

5.3 Evaluation Method

The similarity search system using k-NN method returns
a search result list of environmental sounds based on the
distance in the space of the selected feature set through a
search-key sound. To evaluate the performance using each
feature vector in Table 2, we defined the similarity index
S I between the tag group of the search-key sound tagskey

and that of the retrieved sound tagss as Eq. (36). This index
is known as the Jaccard similarity coefficient that measures
similarity between finite sample sets.

S I =
card

(
tagskey ∩ tagss

)
card

(
tagskey ∪ tagss

) (36)
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To improve an accuracy of similarity index S I, we re-
moved the commoner morphological and inflexional end-
ings from all tags by using Porter Stemmer [34] in advance.
Furthermore, the predefined stop words include sound for-
mats, such as “mp3” and “stereo,” and tool makers, such
as “sony” and “tascam,” were removed from the tag groups
for computing the S Is. The tags that contain the text “fiel-
drecord” were removed from the tag groups because all
sounds in the dataset have them. For each of the 3000
sounds in the dataset, S Is between a search-key sound and
each retrieved sound in the search-result list were computed.
We compared the average values of the S Is of 3000 sounds
for each acoustic feature set.

5.4 Evaluation Results

Table 3 shows the S Is of “top n” for each feature set. The S I
of “top n” is the average value of the S Is between a search-
key sound and each retrieved sound in the top n rank of
the search-result list. Table 3 shows the average values of
the S Is of “top n” computed for each of the 3000 sounds.
For reference, the average value of the S I between two ran-
domly chosen sounds in the dataset is 0.014.

By comparing feature sets 4 and 9 with 2 and 7, respec-
tively, it was confirmed that the descriptiveness of EMFD-
KDE is superior to that of EMFD. S I of “top 1” of feature
set 4 was 8.1% higher than that of feature set 2. S I of “top
1” of the feature set 9 was 4.9% higher than that of feature
set 7.

By comparing feature sets 3 and 8 with 1 and 6, respec-
tively, it was confirmed that the newly-developed MFD-VL
signature improves the performance of similarity search re-
sult. The MFD-VL signature can describe some acoustic
features that MFCCs cannot. S I of “top 1” of the feature
set 3 was 8.2% higher than that of the feature set 1. S I of
“top 1” of feature set 8 was 1.6% higher than that of the
feature set 6.

The results obtained using the feature sets 5 and 10
achieved the best similarity search performance in each
group of feature vectors FS1 and FS2. S I of “top 1” of
feature set 5 was 17.2% higher than that of the feature set 1.
S I of “top 1” of the feature set 10 was 8.7% higher than that
of the feature set 6. It was confirmed that EMFD-KDE and
MFD-VL are effective as an acoustic feature signature for

Table 3 Evaluation results of each feature set quantified using S Is

the environmental sounds.

6. Experimental Evaluation Using Public Dataset and
Other Acoustic Features (EXP2)

6.1 Experimental Setups

We developed another similarity search system to evalu-
ate the proposed acoustic feature signatures by comparing
them with the top-ranked acoustic features used in Task2
of the DCASE 2018 challenge [35]. As a sound dataset
of this similarity search system, we used the train set of
“Freesound Dataset Kaggle 2018” (FSDKaggle2018) [36]
which contains 9473 sound clips provided as uncompressed
PCM 16 bit, 44.1 kHz, mono audio files. The significant
characteristics of the dataset are as follows:

• The sound clips are unequally distributed in the 41 cat-
egories of Google’s AudioSet Ontology [37]. The min-
imum number of sound clips per category is 94, and the
maximum is 300.
• Each sound clip is annotated with a single ground-truth

label of the categories.
• The duration of the sound clips ranges from 300ms to

30s.

The maximal amplitude of sound clips was normalized to
−0.1db before the acoustic feature extraction.

6.2 Acoustic Feature Extraction

We chose the top-ranked acoustic features proposed in the
DCASE 2018 challenge task2, including log-mel energies,
Perceptual weighted power spectrogram, and Logarithmic-
filtered log-spectrogram, to compare their descriptiveness
with that of the EMFD-KDE and MFD-VL signatures. Ta-
ble 4 shows the acoustic feature sets to be used in EXP2.
The significant processes of the feature extraction are as fol-
lows:

Table 4 List of acoustic feature sets for the comparison of their descrip-
tiveness.
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• All acoustic features except MFD-VL were computed
using fixed-width analysis windows of length 50ms ev-
ery 25ms.
• For computing the MFD-VL signature, the length of

the sound signal must be longer than 1s. In case the
target sound clip is shorter than or equal to 1s, we re-
peated the sound signal so that the total length of the
repeated signals becomes longer than 1s.
• Let the smoothing parameter α be 1, which is used for

computing the EMFD-KDE signature in Eq. (16).
• Dimensionality reduction was performed through PCA

using scikit-learn library. The numbers of features L2s
after dimensionality reduction were determined so that
each of their cumulative contribution ratios was 98%.

6.3 Evaluation Method

For each of the 9473 sounds in the dataset, the relevances
between the search-key sound and each retrieved sound in
the search-result list were computed using their category la-
bels. Then, we computed the mean value of Precision@k for
each query on the entire dataset to measure the top-k ranking
quality of the search result lists.

Table 6 Precision@3 scores for each category.

6.4 Evaluation Results

Table 5 shows the Precision@k scores at ranking positions
1, 3, and 10 on the entire dataset. Bold numbers are the best
Precision@k scores for each ranking position k. The results
obtained using the feature set 8’ (MFCC39 + MFD-VL)
achieved the best similarity search performance. By com-
paring feature sets (2’ with 10’, 11’, and 12’), (3’ with 13’,
14’, and 15’), and (4’ with 16’, 17’, and 18’) respectively,
it was confirmed that both the EMFD-KDE and MFD-VL

Table 5 Precision@k scores at ranking positions 1,3, and 10 on the en-
tire dataset.
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signatures improve the performance of the similarity search
task. By comparing feature sets 1’ to 6’, we confirmed that
the Precision@10 score obtained using the feature set 5’
(EMFD-KDE) achieved better performance than those ob-
tained using the feature sets 2’ (log-mel energies), 3’ (Per-
ceptual weighted power spectrogram), and 4’ (Logarithmic-
filtered log-spectrogram), respectively.

Table 6 shows the Precision@3 scores of the search-
result list grouped by the 41 categories for each feature set.
Bold numbers are the best Precision@3 scores for each cat-
egory. The top five numbers of the categories in which each
feature set obtained the best Precision@3 score are 10 cate-
gories for feature set 8’ (MFCC39 +MFD-VL), 9 categories
for feature set 1’ (MFCC39), 7 categories for feature set 9’
(MFCC39 + EMFD-KDE +MFD-VL), 5 categories for fea-
ture set 17’ (Logarithmic-filtered log-spectrogram + MFD-
VL), and 4 categories for feature set 18’ (Logarithmic-
filtered log-spectrogram + EMFD-KDE +MFD-VL).

7. Conclusion

Recent research on ESR focused on the evaluation of time-
domain features of environmental sounds. For ESR, an
acoustic feature must describe the nonstationary character-
istics of target sounds as time-domain features and must be
robust against the following three main causes of the diver-
sity of environmental sounds.

D1) Small fluctuations of sound source parameters, such as
carrier signal frequency, due to the individuality of the
sound source.

D2) Background noises that the person who recorded the
target sound did not expect to record.

D3) Mixed composition of different types of sound sources.

In this study, we have focused on the extraction of acous-
tic feature signatures that are robust against the diversities
caused by D1 and D2.

In a previous study, we proposed the EMFD feature
signature to describe both frequency- and time-domain fea-
tures of target sounds.

However, we also recognized the following problems
in EMFD.

p1) EMFD includes error values.
p2) It is oversensitive to discriminate the features of envi-

ronmental sounds.
p3) It lacks the robustness against the diversity of environ-

mental sounds.
p4) It cannot describe the time-domain features for periods

longer than 10 ms.

To solve these problems, we proposed the EMFD-KDE and
MFD-VL feature signatures.

The newly-proposed EMFD-KDE feature signature is
the probability distribution of the enhanced MFD values at
each radius of the unit disk computed using the kernel den-
sity estimation method. In Sect. 3.2, we studied the method
to optimize bandwidth h used for kernel density estimation.

Based on the normal reference rule, we defined bandwidth
hrbin(α) optimized for each radius of the unit disk by using
Eq. (16). Through the experiments with different values of
the smoothing parameter α, we determined that the best re-
sult of the similarity search task EXP1 is obtained for α = 32
and that of EXP2 is obtained for α = 1. We assume that this
difference of the optimized value of α for each task is caused
by the diversity difference of datasets for each task. In the
FSDKaggle2018 dataset for EXP2, a number of the ground
truth labels have been manually verified, the number of cat-
egories is only 41, and the length of the sound clip is shorter
than 30sec. The dataset for EXP1 is more diverse and com-
plex than the FSDKaggle2018 dataset.

In Sect. 4, we proposed the MFD-VL signature and
demonstrated its characteristics through experiments using
the simulated cricket’s sounds as follows.

• MFD-VL can discriminate the frequencies of the am-
plitude envelopes between 22.6 and 1 Hz.
• It can discriminate the shapes of the amplitude en-

velopes.
• It is robust against the fluctuation of the carrier sig-

nal frequency (, i.e., the diversity cause D1 defined in
Sect. 1.2).
• It is robust against background noises (, i.e., the diver-

sity cause D2 defined in Sect. 1.2).

The MFD-VL signature is expected to describe the time-
domain features for periods longer than 10 ms. The MFD-
VL signature shows stability and robustness against back-
ground noises and small fluctuations of the carrier signal’s
frequency.

From the experimental evaluation results (EXP1), we
confirmed that the descriptiveness of EMFD-KDE supple-
menting MFCC13 and MFCC39 is evidently higher than
that of EMFD supplementing MFCC13 and MFCC39. We
conclude that the smoothness of the EMFD-KDE signature
can solve problems p1, p2, and p3. Furthermore, the exper-
imental evaluation results showed that the MFD-VL signa-
ture supplementing EMFD-KDE and MFCCs improves the
performance of the similarity search. The MFD-VL signa-
ture functions as an effective time-domain feature and can
solve problems p3 and p4.

In Sect. 6, we conducted another experimental evalu-
ation (EXP2) using the FSDKaggle2018 dataset and other
acoustic features. We confirmed clear evidence that both
the EMFD-KDE and MFD-VL signatures have the unique
descriptiveness of environmental sound. These signatures
are effective when they are used with other acoustic features,
including MFCC39 and the top-ranked acoustic features in
the DCASE 2018 challenge task2.

The EMFD-KDE signature has 512 feature elements,
which is relatively more than those of other feature signa-
tures. This implies that the EMFD-KDE signature requires
more computational time than the conventional methods for
feature extraction. For the similarity search task, feature sig-
natures of library sounds can be computed a priori which
implies that we do not care about the computation time of
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the EMFD-KDE signature. While the EMFD-KDE also re-
quires more searching time than conventional method, this
time is negligible compared to the time required for the re-
trieval of matched sounds from the library. The computa-
tional time of EMFD-KDE and the length of searching time
using EMFD-KDE do not matter.

Environmental sounds have the acoustic features in
their frequency domain, as well as other important fea-
tures in the time domain with various time scales. We con-
clude that both the EMFD-KDE and MFD-VL signatures
can describe the essential acoustic features of environmen-
tal sounds with robustness against the diversity of environ-
mental sounds. Further studies are needed to evaluate the
performance of other applications using these acoustic fea-
ture signatures, such as classification tasks using machine-
learning systems.
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[19] D. Mitrović, M. Zeppelzauer, and H. Eidenberger, “On Feature
Selection in Environmental Sound Recognition,” 51st Int. Symp.
ELMAR, no.September, pp.28–30, 2009.
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